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Sleep-Stage Decision Algorithm by Using
Heartbeat and Body-Movement Signals
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Abstract—This paper describes a noninvasive algorithm to esti-
mate the sleep stages used in the Rechtschaffen and Kales method
(R–K method). The heartbeat and body-movement signals mea-
sured by the noninvasive pneumatic method are used to estimate
the sleep stages instead of using the Eletroencephalogram and
Electromyography in the R–K method. From the noninvasive mea-
surements, we defined two indices that indicate the condition of
REM sleep and the sleep depth. Functions to obtain the incidence
ratio and the standard deviation of the extracted elements for
each sleep stage were also determined, for each age group of the
subjects. Using these indices and functions, an algorithm to classify
the subjects’ sleep stages was proposed. The mean agreement
ratios between the sleep stages’ data obtained from the proposed
method and those from the de facto standard R–K method, for the
stages categorized into six, five, and three, were 51.6%, 56.2%, and
77.5%, and their corresponding mean values of kappa statistics
were 0.29, 0.39, and 0.48, respectively. The proposed method shows
closer agreement with the result of R–K method than the similar
noninvasive method presented earlier.

Index Terms—Heartbeat, non REM stage, REM stage, sleep
stage, unconstrained biomeasurement.

I. INTRODUCTION

S LEEPING, which accounts for one-third of humans’ life-
time, provides rest and comfort and also plays an important

role in restoring the brain and the body from fatigue [1], [2].
As the ability to sleep well degrades with age and sleep loses
its function to restore the brain and the body from fatigue,
it becomes difficult to stay healthy. In Japan, where society
is aging dramatically, promoting good health is an important
national issue, and some administrative institutions are starting
to address the matter [3]. Nightly monitoring of the transition
of sleep quality at home is important for preserving good health
and preventing sleep-related diseases, and so, unconstrained
nightly monitoring of sleep conditions will be of great help.

Sleep conditions are now measured with the world standard
Rechtschaffen and Kales method (R–K method) [4], which
categorizes them into six stages, namely, Wake, REM stage,
Sleep 1, Sleep 2, Sleep 3, and Sleep 4, based on brain waves,
eye movement, and the Electromyography (EMG) of jaw mus-
cle. This method, however, largely constrains body movement
as it requires electrodes to be attached to the head, eyelids,
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and jaw in order to measure brain waves, eye movement, and
the EMG of jaw muscle. The large size and high cost of the
equipment also make the method impractical at home. There
have been many research studies on the monitoring of sleep
conditions [5]–[12], but all of them used noninvasive sensors
attached to a bed to measure heartbeat, body movement, and
other elements to estimate the sleep conditions. In contrast, we
have developed an unconstrained pneumatic method to measure
heartbeat and body movement and used it to estimate the
sleep stages used for the R–K method [13]–[16]. The relation
between the heartbeat spectrum and the sleep stages was also
surveyed [17]. These methods and their results, however, still
involved the following problems:

1) the same indices were used to examine REM and non-
REM sleeps, which have different properties;

2) the precision of the sleep-stage estimation needs to be
improved.

This paper proposes a method that solves these problems.

II. OUTLINE OF ISSUES IN THIS PAPER

In this paper, we discuss the following issues to solve the
problems mentioned earlier.

P-1: An index to indicate the REM sleep is defined.
P-2: An index to indicate the depth of sleep is defined.
P-3: Functions to obtain the mean incidence ratio of each sleep

stage and the standard deviation are determined for healthy
subjects of each age group.

P-4: An algorithm to classify similar sleep stages to those used
in the R–K method is proposed.

P-5: A method to realize the aforementioned algorithm without
having to wear any sensor device on a human’s body.

III. PROPOSED METHODS

A. Index Characterizing REM Sleep

With regard to the issue P-1, a REM sleep index is defined
using the heartbeat signal. Table I shows the characteristics of
REM sleep described in [2] and [18].

The R–K method, in determining the REM sleep stage,
focuses on brain waves, eye movement, and the EMG of jaw
muscle, as shown in characteristics No. 1–No. 4 in Table I.
This paper focuses on the fact that the heartbeat becomes less
rhythmical during REM sleep (characteristic No. 5 in Table I).

The discrete time for every 1 min is defined as k, and the
value changes from k = 1, 2, . . ., to TIB. TIB represents the
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TABLE I
CHARACTERISTICS OF REM SLEEP

TABLE II
CHARACTERISTICS OF NON-REM SLEEP

total measurement time (in minutes) with a subject lying on
the bed. Let H former

k be the heart rate of the former 30 s of
the 1 min of discrete time k. Similarly, let H latter

k be the heart
rate of the latter 30 s of the discrete time k. The change of
heart rate between the former and latter halves of the 1-min
discrete time k is thus obtained from |H former

k −H latter
k |. The

same procedures are performed for each of k = 1, 2, . . . , T IB,
and the index R(k) to show the REM sleep stages as in (1) is
obtained through the moving average for the range from k − q
to k + q

R(k) =
1

2q + 1

q∑
i=−q

∣∣H former
k+i −H latter

k+i

∣∣ . (1)

The values of the index R(k) become large during REM sleep
due to the aforementioned characteristic No. 5 of REM sleep in
Table I.

B. Index Characterizing the Wake and Non-REM Sleep

With regard to the issue P-2, a sleep depth index is defined
using the heartbeat and body-movement signals. Table II shows
the characteristics of Wake and Non-REM sleeps described in
[2] and [18].

The sleep depth index is defined based on the fact “When
sleep deepens, body movement becomes smaller and less fre-
quent.” as shown in characteristic No. 3 in Table II.

Let Abody
k and Aheart

k be the mean amplitudes of the body-
movement and the heartbeat signals, respectively, at the discrete
time k. The value of Abody

k becomes large when the sleep is
shallow, as the body movement is frequent. When the sleep is
deep, on the other hand, the value of Abody

k becomes rather
small. The amplitudes of the body-movement and heartbeat
signals vary with differences in the subjects. In order to stan-
dardize these deviations, Abody

k is divided by Aheart
k +Abody

k .
Abody

k largely fluctuates when body movement is detected and
when not detected at all. Abody

k subtly fluctuates when a few
body movements are detected. In order to reduce the large
fluctuations and to magnify the subtle ones, the logarithm of
Abody

k /(Aheart
k +Abody

k ) is calculated, and the sleep depth
index D(k) becomes

D(k) = log2

(
Abody

k

Aheart
k +Abody

k

)
. (2)

The value of the index D(k) becomes small when the sleep is
deep, and the shallower the sleep, the larger the value.

C. Incidence Ratios of the Sleep Stages for Subjects of
Each Age Group

With regard to the issue P-3, the functions, which calculate
the mean incidence ratio of each sleep stage and its standard
deviation to the input data of a subject’s age, are determined.

We determined these functions based on the approximate
values of the fourth-order curve against the incidence ratio of
each sleep stage for 306 subjects aged between 3 and 96 years
old. These 306 subjects’ data were quoted from [19] to [22].

Let a be age. The incidence ratios of each sleep stage,
namely, rWake(a), rREM(a), rNR1(a), rNR2(a), rNR3(a), and
rNR4(a), are obtained from (3), (5), (7), (9), (10), and
(11), respectively, and the standard deviations of each sleep
stage, namely, δrWake(a), δrREM(a), δrNR1(a), δrNR2(a),
δrNR3(a), and δrNR4(a), are obtained from (4), (6), (8), (10),
(12), and (14), respectively

(Wake)

rWake(a) = −3.07× 10−6a4 + 6.02× 10−4a3 − 3.23

× 10−2a2 + 5.99× 10−1a− 1.70× 100

R2 = 0.93 (3)

δrWake(a) = −1.26× 10−6a4 + 2.45× 10−4a3 − 1.24

× 10−2a2 + 2.41× 10−1a+ 1.41× 10−2

R2 = 0.72 (4)

(REM)

rREM(a) = 3.36× 10−6a4 − 6.89× 10−4a3 + 4.55

× 10−2a2 − 1.19× 100a+ 3.50× 10

R2 = 0.88 (5)
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δrREM(a) = 1.14× 10−6a4 − 1.60× 10−4a3 + 6.63

× 10−3a2 − 6.02× 10−2a+ 3.49× 100

R2 = 0.52 (6)

(Non-REM1)

rNR1(a) = −4.20× 10−7a4 + 1.17× 10−4a3 − 8.61

× 10−3a2 + 3.12× 10−1a+ 5.82× 10−1

R2 = 0.82 (7)

δrNR1(a) = 1.02× 10−6a4 − 1.58× 10−4a3 + 7.83

× 10−3a2 − 8.71× 10−2a+ 1.52× 100

R2 = 0.65 (8)

(Non-REM2)

rNR2(a) = 2.82× 10−6a4 − 6.00× 10−4a3 + 3.46

× 10−2a2 − 4.06× 10−1a+ 4.77× 10

R2 = 0.65 (9)

δrNR2(a) = 1.66× 10−6a4 − 2.49× 10−4a3 + 1.14

× 10−2a2 − 7.75× 10−2a+ 4.78× 100

R2 = 0.56 (10)

(Non-REM3)

rNR3(a) = 4.37× 10−8a4 + 2.15× 10−5a3 − 5.92

× 10−3a2 + 3.27× 10−1a+ 1.57× 100

R2 = 0.51 (11)

δrNR3(a) = −4.94× 10−7a4 + 8.00× 10−5a3 − 4.69

× 10−3a2 + 1.54× 10−1a+ 4.77× 10−1

R2 = 0.56 (12)

(Non-REM4)

rNR4(a) = −2.74× 10−6a4 + 5.49× 10−4a3 − 3.33

× 10−2a2 + 3.58× 10−1a+ 1.68× 10

R2 = 0.96 (13)

δrNR4(a) = 1.66× 10−6a4 − 2.60× 10−4a3 + 1.07

× 10−2a2 − 5.30× 10−2a+ 3.36× 100

R2 = 0.50. (14)

In these equations, R2 indicates the determination coeffi-
cient. The domain of a is set between 3 and 92, which is the age
range of the 306 subjects whose data were used to make these
functions. The reason for using the fourth order in (3)–(14)
is because using the fifth or larger order would hardly affect
the determination coefficient. Fig. 1 shows the mean incidence
ratios of each sleep stage and the range of incidence ratios by
standard deviation which are shown by the gray area obtained
from (3)–(14). As shown in Fig. 2, rWake(a) + rREM(a) +
rNR1(a) + rNR2(a) + rNR3(a) + rNR4(a) equals 100%. The
older the subjects, the more frequent the incidence ratio of the
Wake stage and the less frequent the ratio of deeper sleep stages.

Fig. 1. Mean incidence ratio and range of incidence ratio by standard devia-
tion of each sleep stage for each age group. (a) Wake, (b) REM, (c) Non-REM1,
(d) Non-REM2, (e) Non-REM3, (f) Non-REM4.

Fig. 2. Mean incidence ratio and standard deviation of each sleep stage for
each age group.
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Fig. 3. Classification of REM stage.

D. Sleep-Stage Classification

With regard to the issue P-4, the REM sleep periods are
estimated based on the REM sleep index of R(k) and (5) and
(6). The ages of the subjects are input into a in (5) and (6) to
obtain rREM(a) and δrREM(a), where the incidence ratio of
REM sleep is assumed to be within rREM(a)± δrREM(a). As
shown in Fig. 3, the values of REM sleep index of R(k) are
juxtaposed in descending order, and the period whose smallest
R(k) value corresponds to the largest body movement of Abody

k

is classified to REM sleep. This is based on characteristic No. 7
of REM sleep in Table I.

Next, based on the D(k) and (3), (4), and (7)–(14), the
periods for Wake and Non-REM1 through Non-REM4 sleep
stages are classified. The value of sleep depth index D(k),
except for those classified to REM sleep, are juxtaposed in
descending order as shown in Fig. 4. As with the REM sleep
case, the ages of the subjects are input into (3), (4), and (7)–(14)
to obtain the incidence ratio of each sleep stage: Wake, Non-
REM1, Non-REM2, Non-REM3, and Non-REM4. As shown
in Figs. 1 and 2, even if the subjects’ ages are the same, their
incidence ratios of each sleep stage appear in the range of
mean ± standard deviation. Therefore, the incidence ratio of
each stage is assumed to be within the ranges shown as follows:

Wake : [rWake(a)− δrNR1(a), rWake(a) + δrWake(a)]

Non-REM1 : [rNR1(a)− δrNR2(a), rNR1(a) + δrNR1(a)]

Non-REM2 : [rNR2(a)− δrNR3(a), rNR2(a) + δrNR2(a)]

Non-REM3 : [rNR3(a)− δrNR4(a), rNR3(a) + δrNR3(a)]

Non-REM4 : [rNR4(a)− δrNR3(a), rNR4(a) + δrNR4(a)] .

The incidence ratios of Wake and Non-REM1, as with the REM
sleep, apply the values whose corresponding body movements
Abody

k are the largest within the range. With regard to the
incidence ratios of Non-REM2 through Non-REM4, the values
where the slope of D(k) is the largest within the ranges are
applied, respectively. Based on these incidence ratios, periods

Fig. 4. Classification of Wake and Non-REM stages.

for Wake and Non-REM1 through Non-REM4 sleep stages are
classified.

After the classifications, the values are rejuxtaposed chrono-
logically to obtain the sleep stages equivalent to those used for
the R–K method.

E. Pneumatic Method for Unconstrained Biosensing Method
to Measure Heartbeat and Body Movement

With regard to the issue P-5, we have proposed a pneu-
matic method which can measure biosignals without having
to wear any sensor device on a human’s body. Fig. 5 shows
the mechanism of our proposed pneumatic method. A vinyl-
coated air mattress of about 5 mm in thickness is placed under
an ordinary bed cushion (or futon mattress). The inner pressure
of the air mattress is equivalent to atmospheric pressure. When
a person lies on the bed cushion, heartbeat, respiration, and
body movement (such as rolling over) are conveyed to the air
inside the air mattress through the bed cushion. The change in
air pressure is measured with a highly sensitive pressure sensor
(Primo Co. Ltd.). The pressure sensor is capable of measuring
pressure changes between 0.002 and 20 Pa, and its sensitivity
is constant between the frequencies of 0.1 and 3.0 kHz [16].
Because the signals measured by the pressure sensor contain
heartbeat, respiration, and body-movement components, the
signals are input into a biosignal filter circuit, where they go
through a bandpass filter to extract heartbeat components. The
frequency ranges of heartbeat and respiration signals are about
0.8–1.5 Hz and 0.2–0.8 Hz, respectively. When the frequency of
heartbeat is low and that of respiration is high, the frequency of
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Fig. 5. Unconstrained and noninvasive biomeasurement by the pneumatic
method.

the heartbeat and respiration signals may overlap, which makes
it difficult to distinguish the signals for filtering. In order to
distinguish the heartbeat and respiration signals, we extracted
harmonic components of the heartbeat signals because res-
piration signals do not include strong harmonic components
compared with heartbeat signals. Therefore, we chose 5–10 Hz
as the frequency range of the bandpass filter. The signals then
undergo full-wave rectification and envelope processing and are
output from the circuit.

Furthermore, body-movement signals contain many low-
frequency components similar to heartbeat signals. However,
even if heartbeat signals are extracted in the range of 5–10 Hz,
they are strongly affected by body-movement signals because
the amplitude of the body-movement signals is significantly
larger than that of the heartbeat and respiration signals. Hence,
regarding distinguishing the heartbeat and body-movement sig-
nals, we need to apply further signal processing to the output
signals from the biosignal filter circuit as described in the
following sections.

F. Signal-Processing Flow to Calculate Heart Rate

The sampling signals that are output from the biosignal filter
circuit are taken at the interval of dt = 0.01 s and are saved
as time-series data as shown in Fig. 6. The discrete time at
the interval of dt within each minute out of the discrete time
k is defined as l, and the value changes from l = 1, 2, . . . , to
N(= 60/dt). When the heartbeat component and the body-
movement component at the discrete times of k and l are
defined as hk(l) and bk(l), respectively, the output from the
biosignal filter circuit sk(l) is obtained from the linear com-
bination of the heartbeat component and the body-movement
component as follows:

sk(l) = hk(l) + bk(l). (15)

If the heartbeat component hk(l) can be separated from
sk(l) in (15), it will be possible to accurately estimate the heart
rate. We have separated the heartbeat and body-movement

Fig. 6. Biosignal measured by pneumatic method.

components from the base frequencies, their harmonic
components, and other components, by applying fast Fourier
transform (FFT) to the output signals from the sensor [17].
However, body movements such as rolling over contain many
low-frequency components close to the heart rate, and the
heart rate obtained from the FFT peak spectrum occasionally
contained errors. In this paper, a method using comb filters that
effectively uses the heartbeat and its harmonic components to ac-
curately separate the heartbeat and body movement is proposed.

If the delay time of the comb filters is defined as T , T/dt in
terms of a discrete time is obtained. When the feedback gain
of the comb filter is defined as gh(0 ≤ gh ≤ 1), the heartbeat
component ĥk(l) at the discrete times of k and l is shown
as output data from the comb filter as given by the following
equation:

ĥk(l) = sk(l) + sk

(
l − T

dt

)
+ gh · ĥk

(
l − T

dt

)
. (16)

The frequency characteristics of the comb filter in (16) are
shown in Fig. 7. The filters of (16), as shown in Fig. 7, peak
at the direct-current component and at the frequencies that
correspond to integer multiples of 1/T . The sharpness of the
peaks of the frequency characteristic shown in Fig. 7 varies with
the feedback gain gh: The closer the feedback gain gh is to one,
the sharper the wave shape. When T in (16) is close to the actual
heartbeat cycles, the filters in (16) amplify the amplitude of the
heartbeat component. Fig. 8 shows the juxtaposition of 78 comb
filters for (16) with the delay times T of 0.66, 0.67, 0.68, . . .,
1.43 s. The delay time of the first comb filter is T = 0.66 s,
and it resonates with the heartbeat cycle of 90 times/min as
the frequency peaks at integer multiples of 1.51 Hz. Similarly,
the 78th comb filter, with the delay time of T = 1.43 s, has
its peak frequencies at the integer multiples of 0.7 Hz; thus, it
resonates with the heartbeat of 42 times/min. The delay-time
resolution of these comb filters is 60dt/T 2 for a minute of
heartbeat: 1.35 times/min for the heartbeat of 90 times/min and
0.29 times/min for that of 42 times/min. These 78 comb filters
therefore encompass the heartbeat between 42 and 90 times/min
with the mean resolution of 0.82 times/min.
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Fig. 7. Frequency characteristics of comb filter in (16).

Fig. 8. Heartbeat-cycle estimation by comb-filter group.

The data for the former 30 s of the 1 min of the discrete time
k, namely, sk(1), sk(2), sk(3), . . . , sk(N/2), are input into
these comb filters, and their output data ĥk(l) obtained from
these comb filters are compared for their amplitudes. The delay
time T of the comb filter with the largest amplitude for ĥk(l) is
estimated to be the heartbeat cycle T former

k in the former 30 s.
Similarly, the delay time where the amplitude ĥk(l) becomes
the largest against the input data among the latter 30 s of the dis-
crete time k, namely, sk(N/2 + 1), sk(N/2 + 2), sk(N/2 +
3), . . . , sk(N), is determined as T latter

k . Therefore, the heart
rates of the former 30 s H former

k and latter 30 s H latter
k in (1) are

H former
k = 60/T former

k and H latter
k = 60/T latter

k , respectively.

G. Signal-Processing Flow to Calculate the Amplitude of the
Body Movement

To calculate the Abody
k in (2), we consider a different comb

filter from (16). When the feedback gain of the comb filter
is defined as gb (0 ≤ gb ≤ 1), the body-movement component
b̂k(l) at the discrete times of k and l is shown as output data
from the comb filter as given by the following equation:

b̂k(l) = sk(l)− sk

(
l − T

dt

)
+ gb · b̂k

(
l − T

dt

)
. (17)

The frequency characteristics of the comb filter in (17) are
shown in Fig. 9. The gains for the filter of (17), as shown in
Fig. 9, become zero at the same frequencies where the gains
peaked in Fig. 7.

Fig. 9. Frequency characteristics of the comb filter in (17).

When T in (16) is close to the actual heartbeat cycles, the fil-
ter in (16) amplifies the amplitude of the heartbeat component,
whereas the filter in (17) attenuates the heartbeat component
and amplifies the body-movement component. The output data
b̂k(l) of (17) at the delay time T , which is close to the heartbeat
cycle, indicate attenuation in the heartbeat component and
amplification in the body-movement component. The mean
amplitude of the output from (17) with the same T used for
estimating the heart rate at the discrete time k is determined
as Abody

k .
Then, Aheart

k +Abody
k in (2) is determined as the mean

amplitude of the sk(l) because of the linearity shown in (15).

IV. VERIFICATION EXPERIMENT

A. Subjects and Experimental Environment

The experiment was carried out on ten healthy adult male
subjects (A–J) with the mean age of 22.2 years old. After
obtaining informed consent from each of them, their sleeps
were measured for 20 nights. The measurement environment
was as shown in Fig. 10. Heartbeat and body movement were
measured using the pneumatic method. The brain waves and
eye movement were also measured simultaneously using a
polygraph (SANYOFIT2500NEC San-ei) to be compared with
the heartbeat and sleep stages.

B. Verification of the Validity of REM Sleep Index

With regard to the verification of the issue P-1, Fig. 11 shows
the R(k) of subject F’s second night, the incidence ratios of
delta wave and spindle wave among the brain waves, and the
incidence ratio of REM, all of which were measured with a
polygraph. The order of the moving average of R(k) in (1)
was set to q = 10. In addition, the gain gh of the comb filters
shown in Fig. 8 was set to gh = 0.95. When the R(k) value is
large, the fluctuation of heart rate is also large. This, in light of
characteristic No. 5 of REM sleep in Table I, shows the high
possibility of the appearance of REM sleep. During the periods
shown in gray in Fig. 11, the incidence ratios of delta wave
and spindle wave are low, and the appearance of REM is rather
frequent, indicating characteristics No. 2 and No. 4 of REM
sleep. During their corresponding periods, the values of the
REM sleep index R(k) are rather large. The periods when the
R(k) takes large values appear roughly once every 100 min, as
indicated in characteristic No. 6 of REM sleep. This shows that
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Fig. 10. Measurement system.

Fig. 11. R(k), percent of delta wave, percent of spindle wave, and number of
REMs each minute.

the concurrent appearances of the REM sleep characteristics
No. 2, No. 4, and No. 5 during a REM sleep enable the
appearance of REM sleep to be estimated with the index R(k).

C. Verification of Validity of Sleep Depth Index

With regard to the verification of the issue P-2, the function
gb in (17) is set to gb = 0.8. Fig. 12 shows the D(k) and delta
wave of F-2. The periods shown in gray in the figure show high
incidence ratios of delta wave, and this indicates a deep-sleep
stage as indicated by characteristic No. 1 of Non-REM sleep
in Table II. During these periods, the value of D(k) becomes
small. This shows that the concurrent appearances of the Non-
REM sleep characteristics No. 1 and No. 3 enabled the sleep
depth to be estimated using the sleep depth index D(k).

Fig. 12. D(k) and percent of delta wave each minute.

D. Classification of Sleep Stages

With regard to the verification of the issue P-4, sleep stages
are determined using the algorithm described in Section III-D,
and the stages are compared with those determined by the R–K
method. Fig. 13 shows the classified six sleep stages based on
R(k) and D(k) and the classified sleep stages based on the R–K
method.

A comparison between the sleep stages classified with R(k)
and D(k) and the sleep stages classified with the R–K method
indicates they have generally similar wave shapes such as:
the places where the 100-min cycle of REM sleep appears
as shown in characteristic No. 6 in Table II and in the sleep
stages that become shallower toward dawn. However, with
regard to the periods around 100 min and around 280 min,
the proposed method determined these as Non-REM4, whereas
the R–K method judged them as Non-REM2. The period
around 470 min was determined as Wake by the proposed
method but as REM sleep by the R–K method. The agree-
ment ratios of the classification results of each method
against TIB[number of agreements/TIB × 100(%)] and
the kappa statistics were used for the comparison. The agree-
ment ratio and the kappa statistics (see the Appendix), for a one-
night sleep of TIB = 537 min with the sleep stages classified
into six as shown in Fig. 13, were 52.1% and 0.25, respectively.
Table III shows TIB, the agreement ratios, and the kappa
statistics corresponding to the sleep stages classified into six
stages of all subjects and also shows their mean values and
standard deviations. Fig. 14 shows the sleep stages classified
into five stages (Non-REM3 and Non-REM4 are classified as
the same stage as a deep-sleep stage [22]) by each method.
The agreement ratio and the kappa statistics were 58.7% and
0.38, respectively. Table IV shows the agreement ratios and the
kappa statistics corresponding to the sleep stages classified into
five stages of all subjects and also shows their mean values
and standard deviations. Moreover, Fig. 15 shows the sleep
stages classified into three stages (Non-REM1–Non-REM4 are
classified as the same stage as a Non-REM sleep stage) by
each method. The agreement ratio and the kappa statistics were
79.5% and 0.46, respectively. Table V shows the agreement
ratios and the kappa statistics corresponding to the sleep stages
classified into three stages of all subjects and also shows their
mean values and standard deviations.

V. DISCUSSION

With regard to each sleep-stage classification, the agree-
ment ratios and the kappa statistics of the other subjects in



KURIHARA AND WATANABE: DECISION ALGORITHM BY USING HEARTBEAT AND BODY-MOVEMENT SIGNALS 1457

Fig. 13. Classification of sleep stages into Wake, REM, Non-REM1, Non-
REM2, Non-REM3, and Non-REM4. (a) Pneumatic method, (b) R–K method.

TABLE III
SLEEP-STAGE AGREEMENT AND KAPPA STATISTICS BETWEEN THE

PROPOSAL METHOD AND THE R–K METHOD (WAKE, REM,
NON-REM1, NON-REM2, NON-REM3, AND NON-REM4)

Tables III–V, like the subject for F’s second night increase as
the number of the classification decreases from six to three.
In the previous works [15] and [17], we also evaluated the
sleep-stage agreement. The average agreement ratios for the six
stages in the previous works were 42.8% and 36.4%, whereas
by the proposed method, the agreement is 51.6%, as shown in
Table III. Thus, the proposed algorithm improved the precision
by about 10%–15%. The mean value of its corresponding kappa
statistics was 0.29 including the errors due to coincidences.
For the sleep stages classified into five, the mean agreement
ratio increased by 4.6%–56.2%, and the ratio was 77.5% for
the classification into three stages. This is because the disagree-
ment ratio is larger among Non-REM1, Non-REM2, and Non-
REM3/Non-REM4 than between Non-REM3 and Non-REM4.
The average of the kappa statistics was 0.39 for the sleeps
classified into five and 0.48 for those classified into three, and

Fig. 14. Classification of sleep stages into Wake, REM, Non-REM1, Non-
REM2, and Non-REM3/Non-REM4. (a) Pneumatic method, (b) R–K method.

TABLE IV
SLEEP-STAGE AGREEMENT AND KAPPA STATISTICS BETWEEN THE

PROPOSAL METHOD AND THE R–K METHOD (WAKE, REM,
NON-REM1, NON-REM2, AND NON-REM3/NON-REM4)

Fig. 15. Classification of sleep stages into Wake, REM, and Non-REM.
(a) Pneumatic method, (b) R–K method.

the general sleep patterns and the rhythms of REM and Non-
REM sleeps can thus be identified.

The proposed algorithm allows us to monitor and improve
the quality of daily sleep at home. High-quality sleep is impor-
tant for good health and preventing sleep-related diseases such
as narcolepsy and insomnia.
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TABLE V
SLEEP-STAGE AGREEMENT AND KAPPA STATISTICS BETWEEN

THE PROPOSAL METHOD AND THE R–K METHOD

(WAKE, REM, AND NON-REM)

VI. CONCLUSION

In this paper, the REM sleep index R(k) and the sleep
depth index D(k) have been determined, and the relationships
of these indices with the periods when the delta wave, spin-
dle wave, and REM occur have been examined. When REM
was frequent, and the delta wave and spindle wave were not
frequently observed, the R(k) value was large, indicating a
high possibility of REM sleep incidence. The D(k) value, on
the other hand, is a small value when the incidence of delta
wave is frequent, and the value changes from large to small
corresponding to the change in sleep depth from Wake to Non-
REM1, Non-REM2, Non-REM3, and Non-REM4. In order
to estimate the sleep stages based on these two indices, the
coefficients for the fourth-order curve to calculate the mean
incidence ratio and the standard deviation of each sleep stage
were determined. It was shown that using these two indices,
the incidence ratio of each sleep stage, and its corresponding
standard deviation, improved the accuracy of estimating the
sleep stage compared with the conventional method.

The proposed algorithm depends on the measurements of
the heartbeat and body movement by the pneumatic method
presented in [16]. The novelty of the algorithm in comparison
with that in [15] which also depends on the pneumatic method
is the use of the two indices D(k) and R(k) and the information
on sleep-stage characteristics determined by age. The proposed
algorithm improves the precision by about 10% in comparison
with the result in [15].

One of our ultimate objectives is to apply our system to
elderly people for improving the quality of their sleep. As
a preliminary step, in this study, we carried out experiments

TABLE VI
KAPPA STATISTICS

using young subjects to verify the accuracy of the proposed
algorithm. We now intend to conduct verification experiments
using subjects with a wider range of age.

APPENDIX

KAPPA STATISTICS

The kappa statistic is an index that shows the degree of
coincidence of judgments among plural scorers. As an example,
here, we consider two scorers A and B for three items a, b, and
c as listed in Table VI.

Table VI shows judgment frequency fi,j for three items a, b,
and c by two scorers A and B. Let

Po =

3∑
i=1

fi,i

3∑
i=1

3∑
j=1

fi,j

and

Pe =

3∑
i=1

f1,i
3∑

j=1

fj,1 +
3∑

i=1

f2,i
3∑

j=1

fj,2 +
3∑

i=1

f1,3
3∑

j=1

fj,3

3∑
i=1

3∑
j=1

fi,j

.

Then, the kappa statistic κ is defined as κ = (Po − Pe)/
(1− Pe).

REFERENCES

[1] R. Kawahara, H. Maeda, and S. Yoshioka, “Sleep disorder as a modern
disease,” Japan Rev., Tokyo, Japan, 2000.

[2] S. Chiba and K. Homma, The Clinic of Circadian Sleep Disorder.
Tokyo, Japan: Shinko Med. Publ., 2003.

[3] Japan General Research Institutes, Report on New Industrial Generation
on Health Care Services, Information Policy Department of Ministry of
Industry and Trade of Japan, 2004.

[4] A. Rechtschaffen and A. Kales, A Manual of Standardized Terminol-
ogy, Techniques and Scoring System for Sleep Stage of Human Subjects.
Washington, DC: Public Health Service U.S. Gov. Printing Office, 1968.

[5] B. H. Jansen and W.-K. Cheng, “Classification of sleep patterns by means
of Markov modeling and correspondence analysis,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 9, no. 5, pp. 707–710, Sep. 1987.

[6] I. Gath and A. B. Geva, “Unsupervised optimal fuzzy clustering,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 11, no. 7, pp. 773–780, Jul. 1989.

[7] K. Otsuka and Y. Yanaga, “Studies of arrhythmias by 24 hours poly-
graphic recordings relationship between the heart rate and sleep stages,”
Fukuoka Acta Med., vol. 72, no. 10, pp. 596–598, Oct. 1981.

[8] T. Salmi and L. Leinonen, “Automatic analysis of sleep records with
static charge sensitive bed,” Electroencephalography Clin. Neurophysiol.,
vol. 64, no. 1, pp. 84–87, Jul. 1986.

[9] S. Doi and H. Takahashi, “Development of estimation method of sleep
condition from information of human body movement by a neural net-
work,” IEEJ, vol. C-114, no. 11, pp. 84–87, 1994.

[10] R. H. Harper, V. L. Schechman, and K. A. Kluge, “Machine classifi-
cation of infant sleep stage using cardio respiratory measures,” Elec-
treoncephalography Clin. Neurophysiol., vol. 67, no. 4, pp. 379–387,
Oct. 1987.



KURIHARA AND WATANABE: DECISION ALGORITHM BY USING HEARTBEAT AND BODY-MOVEMENT SIGNALS 1459

[11] Y. T. Peng, C. Y. Lin, M. T. Sun, and C. A. Landis, “Multimodality sensor
system for long-term sleep quality monitoring,” IEEE Trans. Biomed.
Circuits Syst., vol. 1, no. 3, pp. 217–227, Sep. 2007.

[12] W. Karlen, C. Mattiussi, and D. Floreano, “Sleep and wake classification
with ECG and respiratory effort signals,” IEEE Trans. Biomed. Circuits
Syst., vol. 3, no. 2, pp. 71–78, Apr. 2009.

[13] H. Watanabe and K. Watanabe, “Non-invasive measurement of heartbeat,
respiration, snoring and body movement of a sleeping subject,” Trans.
Soc. Instrum. Control Eng., vol. 35, no. 8, pp. 1012–1019, 1999.

[14] T. Watanabe and K. Watanabe, “Estimation of the sleep stages from
the bio-data non-invasively measured in the sleep,” Trans. Soc. Instrum.
Control Eng., vol. 38, no. 7, pp. 581–589, 2002.

[15] T. Watanabe and K. Watanabe, “Non-contact method for sleep stage es-
timation,” IEEE Trans. Bio-Med. Eng., vol. 51, no. 10, pp. 1735–1748,
Oct. 2004.

[16] K. Watanabe, T. Watanabe, H. Watanabe, H. Ando, T. Ishikawa, and
K. Kobayashi, “Noninvasive measurement of heartbeat, respiration, snor-
ing and body movement of a subject in bed via a pneumatic method,”
IEEE Trans. Bio-Med. Eng., vol. 52, no. 12, pp. 2100–2107, Dec. 2005.

[17] K. Watanabe, T. Manabe, and T. Yoshikawa, “Definition of sleep indices
by pulse wave and body movement and estimation of sleep stages,” Trans.
Soc. Instrum. Control Eng., vol. 42, no. 4, pp. 404–410, 2006.

[18] The Japanese Society of Sleep Research, Handbook of Sleep Science and
Sleep Medicine, Tokyo, Japan: Asakura Publ. Comp., 1998.

[19] R. L. Williams, I. Karacan, and V. J. Hursch, “Electroencephalography
(EEG) of human sleep,” in Clinical Applications. Hoboken, NJ: Wiley,
1974.

[20] H. W. Agnew, Jr., W. W. Webb, and R. L. Williams, “Clinical and lab-
oratory notes, sleep patterns in late middle age males: An egg study,”
Electreoncephalography Clin. Neurophysiol., vol. 23, no. 2, pp. 168–171,
Aug. 1967.

[21] Ono, Endo, Nishihara, Maki, and Koga, “Change in sleep by aging—
Sleeps elder subjects then 60-,” Clin. Neurol., vol. 28, no. 2, pp. 88–93,
1986.

[22] Y. Hayashi, “Midnight polygraph (No. 2)—REM and slow wave sleeps,”
Clin. Neurol., vol. 19, no. 10, pp. 660–668, 1979.

[23] The AASM Manual for the Scoring of Sleep and Associated Events: Rules,
Terminology and Technical Specification, 2007.

Yosuke Kurihara received the M.E. and Ph.D. de-
grees from Hosei University, Tokyo, Japan, in 2003
and 2009, respectively.

Since 2009, he has been an Assistant Professor
with the Department of Computer and Information
Science, Faculty of Science and Technology, Seikei
University, Tokyo. His research interests include sen-
sor method and biosensing.

Dr. Kurihara is a member of Japanese Society for
Medical and Biological Engineering, etc.

Kajiro Watanabe (M’01) received the M.E. and
Ph.D. degrees from Tokyo Institute of Technology,
Tokyo, Japan, in 1970 and 1973, respectively.

Since 1985, he has been a Professor with the De-
partment of Advanced Sciences, Faculty of Science
and Engineering, Hosei University, Tokyo, where he
was a Research Assistant from 1973 to 1974, a Lec-
turer in 1975, and an Assistant Professor from 1950
to 1984. From 1980 to 1981, he was a Visiting Asso-
ciate Professor with Oakland University, Rochester,
MI, and from 1981 to 1982, he was the Research

Associate with The University of Texas, Austin. In the industrial field, he
acts as an authorized Japan Professional Engineer. He is the Chief Researcher
of the several projects conducted by the Ministry of Economy, Trade, and
Industry, Japan. His major interest is control and instrument, and he is currently
interested in biomeasurement, sports measurement, robotics, fault diagnosis,
vehicle, environmental monitoring, and intelligent control. He is the holder of
61 patents, has 12 publications in the control-engineering field, and has more
than 230 referenced journals and conference proceedings.

Dr. Watanabe is a member of the Society of Instrument and Control
Engineers.


