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Sleep-States-Transition Model by Body Movement
and Estimation of Sleep-Stage-Appearance
Probabilities by Kalman Filter

Yosuke Kurihara, Kajiro Watanabe, Member, IEEE, and Hiroshi Tanaka

Abstract—The judgment standards of R-K method include am-
biguities and are thus compensated by subjective interpretations
of sleep-stage scorers. This paper presents a novel method to com-
pensate uncertainties in judgments by the subjective interpreta-
tions by the sleep-model estimation approach and by describing
the judgments in probabilistic terms. Kalman filter based on the
two sleep models with no body movement and with body move-
ment was designed. Sleep stages judged by three different scorers
were rejudged by the filter. The two sleep models were stochasti-
cally estimated from biosignals from 15 nights’ data and the re-
judged scores by the filter were evaluated by the data from 5 nights.
The average values of kappa statistics, which show the degree of
agreement, were (.85, 0.89, and 0.81, respectively, for the original
sleep stages. Because the new method provides probabilities on
how surely the sleep belongs to each sleep stage, we were able to
determine the most, second most, and third most probable sleep
stage. The kappa statistics between the most probable sleep stages
were improved to 0.90, 0.93, and 0.84, respectively. Those of sleep
stages determined from the most and second most probable were
0.92,0.94, and 0.89 and those from the most, second most, and third
most probable were 0.95, 0.97, and 0.92. The sleep stages estimated
by the filter are expressed by probabilistic manner, which are more
reasonable in expression than those given by deterministic man-
ner. The expression could compensate the uncertainties in each
judgmentsand thus were more accurate than the direct judgments.

Index Terms—R-K method, sleep-stage-state variable equation,
sleep-stage transition probability matrix, sleep stages.

1. INTRODUCTION

LEEPING is a vital role in recovery from mental and phys-

S ical fatigue [1], [2]. Its importance is reflected in Japan’s

national health improvement projects involving sleep [3], and

many organizations are researching noninvasive techniques for
measuring sleep conditions [4]-[10].

Sleep is categorized into six different stages using the R-K

method, in which a nominal scale is applied to brain waves, eye
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movement, and myoelectricity of the submental muscles [11]
at time intervals divided independently for all-night sleep. The
stages are AWAKE, Rapid eye movement (REM) Sleep, and
Non-REM sleep 1, 2, 3, and 4. In using the R-K method, how-
ever, some of the rules include ambiguities and the scorers must
subjectively interpret what happens during the sleep from the
biosignals mentioned previously. As a result, different scorers
might judge different sleep stages for the same data. A method
called kappa statistics is used to evaluate the reliability of judg-
ments [12].

We propose that having another reference, a sleep-transition
model that shows the all-night sleeping trend characteristics
and applying it to compensate the judgments given by scorers,
would improve the reliability of judgment. There have been var-
ious reports on using a sleep model [13], [14], but our model
and method are different in which we use a new sleep-transition
model and apply a Kalman filter to the model. Here, we cite the
sleep-stage-transition equation estimated from clinical data and
use it as a state variable equation for designing a Kalman filter.
The measurements used for the filter are the temporal changes in
sleep stages judged by a scorer or automatic sleep-stage estima-
tor. The state variables estimated by the filter are probabilities
of how surely the sleep can be categorized into each sleep stage.
Here, we describe how to build the sleep-stage-transition prob-
ability matrix, sleep-stage-transition equation and optimal the
Kalman filter.

This paper is aimed at describing a novel scheme to compen-
sate uncertainties of sleep stage judged by sleep medical special-
ists. The uncertainties are due to the ambiguities of the standards
of the R—K method and fluctuations of sleep characteristics in
the judgment time interval. Despite of such the uncertainties,
the conventional expression of the sleep stage was determin-
istic, which is not reasonable. Here, we present a method to
express the sleep stage by probabilities on how surely the sleep
belongs to each sleep stage. Further, we present a novel method
to compensate the fluctuations in judgments by comparing the
judged sleep state with the normal-sleep-transition model. The
state of sleep and/or awake when body movement occurs and
the state of sleep when no body movement occurs are different,
and so we prepare two different transition models. An approach
based on the state-estimation theory is newly introduced to real-
ize the algorithm for the compensation. Here, we describe a new
methodology of scoring the sleep stages based on probabilistic
terms instead of scoring in a deterministic manner to compen-
sate uncertainties in judgments. The validity of the method is
examined using only young subjects as examples.

1089-7771/$26.00 © 2010 IEEE
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II. METHOD

A. Sleep-Stage-Transition Probability Matrix

First, in building the sleep-stage-transition model, numbers
are assigned to the sleep stages as follows:

1) for Wake;

2) for REM;

3) for Non-REM1;

4) for Non-REM2;

5) for Non-REM3; and

6) for Non-REM4.

The number is nominal and is used instead of the sleep cate-
gory in mathematical representations.

In the sleep-stage transition, body movement plays the key
functions [2], [15] as follows.

F1) Non-REMI1 sleep stage frequently occurs after REM,
Non-REM3, and Non-REM4, triggered by a body
movement.

F2) The sleep stage frequently switches just after body move-
ment when the stage is Non-REM3 or Non-REM4.

F3) Body movement occurs just before and/or after REM.

F4) AWAKE stage frequently occurs after a body movement.

Let A be the probability transition matrix. The element in
matrix A can be determined statistically from clinical data. Body
movement plays a key function in switching from one sleep
stage to another, as described previously; here, we obtain two
different probabilistic state-transition matrices. One is when
body movement is included and the other is when no body
movement is included. Let E; ; be an event in which the sleep
stage switches from i stage to j stage for ij = 6, 5, 4, 3,2, 1,
let E; be an event in which the sleep stage switches to j stage,
let £, and E,, be events in which body movement occurs and no
body movement occurs, respectively, and let P(E; ;), P(E;), and
P(E}) be the probability of these events occurring, respectively.

The element a; ; , which is the probability that sleep in i stage
at k discrete time switches to j stage at k +1 discrete time, is
given by conditional probability as follows:

0. — JP(E|E: Ey)
M\ P(E|E E)

(body movement occurs)
(no body movement occurs)

(1)

when

where S°°_ @, ; = 1 must be satisfied.

B. Sleep-Stage State Variable Equation

Here, we describe the sleep-stage state variable equa-
tion. Let T}, be the total time that the subject is in bed,
let k(k=1,2,3,...,T;) be a discrete time of every 1
min with the sleep stage judged within that time, and let
x1(k), xo(k), x3(k), x4(k), z5(k), and z4(k) be the proba-
bilities of how surely the sleep stages belong to 1,2, 3,4, 5, and
6, respectively.

Furthermore, let the vector x(k) = [x1(k), xo(k), x3(k), x4(k),
x5(k), x6(k)]" be the state vector. The sleep-stage state vector
x(k) transits to x(k + 1) following to the relation z(k + 1) =
Ax(k) in the transition time from k to k + 1. The state vec-
tor (k) is corrupted by the uncertainties of the transition re-
lation which is referred to as system noises. Let the vector
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Fig. 1. Shannon diagram of sleep-stage transition.

w(k) = [wy (k), wa (), ws (k) wi (k), ws (), wo (k)" be the
system noise vector, which is unbiased but has variances ¢7,
€2, 62,62, &2 and &2, respectively. Then, the sleep-stage-state
variable equation is given as follow:

x(k+1) = Ax(k) + w(k). (2)

Fig. 1 shows a Shannon diagram of the sleep-state-transition
equation and the coefficient a; ; is the (j, i) element in matrix A.
The element a; ; has a different value for the body movement
condition, as described in (1).

And let the vector y(k) = [y1(k), y2(k), y3(k), ya(k), y5(k),
ys(k)]T be the sleep stage judged by a certain method such
as the R—K method by scorers. y(k) is deterministically given
corresponding to the judgment of sleep stage as follows:

[T 0 0 0 0 0] (WAKE)

[0 1.0 0 0 0]F (REM)
_Jo o 10 0 0] (Non-REMT1)
v =90 00 1 0 07 " (Non-REM2)
[0 0 00 1 0]F (Non-REM3)
[0 000 0 1] (Non-REM4)

In the decision of sleep stages via the R—K method by scorers,
there may occur the errors due to the subjective judgments error.
The error due to the judgment can be referred to observation
noise. Let the vector v(k) = [v1(k), va(k), v3(k), vi(k), v5(k),
vs(k)]T be the observation vector, which is unbiased but has
variances 7, 75, T3, 77, 72, and 7¢, respectively. Then, the

measurement equation is given as follows:

y(k) = Iz (k) + v (k). ©)
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Fig. 2. Block diagram of the sleep-states-transition model.

I is an identity matrix with dimensions (6 x 6) in (3). The
elements of state-transition vector directly correspond to the
sleep-stage judgments (measurements). Thus, y(k) = x(k) +
v(k) = Iz(k) + v(k). Just after bed-in and just before bed-
out, the subject must be in the AWAKE stage; thus

x(0) = =(T;;) =[1000000)7.

Fig. 2 shows a block diagram of the sleep-state-transition
model.

C. Kalman Filter to Estimate Sleep-Stage-Appearance
Probability

Here, we consider Kalman filter to estimate the probability
of how surely the sleep belongs to each sleep stage based on
the state-variable equation. The Kalman filter is a state estima-
tor for an object whose characteristics are given by an a priori
mathematical model described as the state variable equations (2)
and (3) [16]. It estimates all state variables from measurements
corrupted by noise. The state variable in (2) is the probabil-
ity, thus, we estimate the probability from the sleep judgments
(measurements), which may include errors.

Let &(k | k) be the estimate of x(k) at k, and let &(k |k — 1)
be the predict of x(k) at k — 1. Let Q and R be the covari-
ance matrices of the noises w(k) and v(k), respectively, and
P(k |k — 1)be the co-variance matrix of the error between the
state vector x(k) and the predicted state vector &(k |k — 1).
Then, the matrix K (k) referred to Kalman gain is determined
so that it minimizes the value of P(k |k — 1) from the matri-
ces A, 0, and R. The Kalman filtering processing is given as
follows:

w(k|k)=a(k|k-1)+ K(k){y(k) —x(k|k-1)} @
with
&klk—1) =A@k —1|k—1)
Kk)=Pk|k—1){Pk|k—1)+ R}

Pk+1|k)=A{Pk|k—-1)- K&)Pk|k-1)} AT +Q.

Because the initial and final times in the sleeping are in the
“Wake” stage, we let the initial condition #(1]0) and the fi-
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Measurement system.

nal condition &(T}, | Tjp — 1) be (1]0) = &(T | Tip — 1) =
[1000000]".

The values of &7,&3, 62,62, €, ¢ and 77,75, 72,
72, 72, 72 are optimally determined by genetic algorithm [17].
Genetic algorithms are one of the search techniques used in
computing to find exact or approximate solutions to optimiza-
tion and search problems. A degree of adaptation index shows
the degree of how the process approaches the exact or approxi-
mate solutions. As an index, we selected the coincidence rate of
the measurements y(k) and the most probable state in &(k | k)
estimated by the filter for the entire measurement time for the
test subjects.

III. RESULTS

In order to estimate a normal sleep-stage-transition equa-
tion, we employed 10 normal sleep subjects, average age 22.2
years old, and we conducted clinical tests over a period of 20
nights. Fig. 3 shows the sleep conditions. We obtained informed
consent from each subject. Sleep stage was evaluated by the
international 10/20 method [15] and so electroencephalogram
(EEQG) at points C4-A1 and C3-A2 of the head, eye movement,
and electromyography (EMG) at submental muscles were mea-
sured. Electrocardiograms were measured using the I-induction
correction method [15]. The sampling interval of the data ac-
quisitions was 0.01 s. For the measurements, we employed
a polygraph (SANEI FIT 2500). To follow the R-K proce-
dure, we let scorers judge two times for every 1 min, i.e.,
every 30 s, and let them make a final single judgment from
two judgments for every minute. Body movements can be de-
tected by EMG artifacts occurring in the measurements of brain
wave and eye movements. The body movements can be classi-
fied into small body movements, which continue for less than
0.5 s, and large body movements, which continue for more than
0.5 s [15]. We detected body movements using this detection
procedure. The method was verified by comparison with the
pneumatic body-movement detection method [6]. Sleep stages
were judged by three different scorers.

A. Estimation of Sleep-Stage-Transition Equation

First, we estimated the transition matrix A. The data from the
20 nights were randomly divided into Group 1 and Group 2:
Group 1 consisting of 15 nights’ data, and Group 2 consisting
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of the remaining 5 nights’ data. The Group 1 data was used
to estimate the transition matrices and the Group 2 data was
used to evaluate the models. The occurrence of body movement
was detected from artifacts in the brainwave measurements.
The transition matrix was calculated from the stages judged by
Scorer 1 using the R-K method. Transition matrices when body
movement occurred and when no body movement occurred were
obtained as follows.
When body movement occurred

0.333 0.034 0.000 0.008 0.030 0.044
0.103 0.729 0.318 0.023 0.000 0.011
A, = 0.154 0.106 0.273 0.002 0.067 0.066
0.410 0.131 0.409 0.952 0.127 0.066
0.000 0.000 0.000 0.015 0.732 0.198
0.000 0.000 0.000 0.000 0.044 0.615
(&)
When no body movement occurred
0.333 0.014 0.000 0.006 0.003 0.000
0.167 0.866 0.167 0.014 0.000 0.000
A — 0.000 0.014 0.333 0.001 0.000 0.000
" 0.500 0.106 0.500 0.951 0.059 0.000
0.000 0.000 0.000 0.028 0.879 0.145
0.000 0.000 0.000 0.000 0.059 0.855
(6)

Fig. 4 shows the Shannon diagram of the sleep-transition
equation. When no body movement occurred, the prob-
ability of transition was zero for “Wake—Non-REMI,”
“Non-REM3—Non-REM1,” “Non-REM4—AWAKE,” “Non-
REM4—REM,” “Non-REM4—Non-REM1,” and “Non-
REM4—Non-REM2”. When body movement occurred, the
probability increased and thus sleep-stage transition occurred
frequently. Especially, the probability of switching from
Non-REM4 to a shallower stage is high. Here, we analyze
whether the Shannon diagram in Fig. 4 or the transition matri-
ces (5) and (6) satisty the sleep feature (F1)—(F4) in conjunction
with body movement, as described in Section II. Table I shows
the value of elements a3 o, a3 5, and az s in Ay and A, .

The elements in (5) when body movement occurred are
greater than those in (6) when no body movement occurred,
with a 5% significance level. Thus, (F1) “Non-REM 1 sleep stage
frequently occurs after REM, Non-REM3, and Non-REM4, trig-
gered by body movement” is shown. Table II shows the values
of elements a5 5 and ag 6.

These are the probabilities of maintaining the same sleep
stage. Those in (5) are less than those in (6), with a 5% sig-
nificance level. Thus, (F2) “Sleep-stage transition frequently
switches just after body movement when the stage is Non-
REM3 or Non-REM4” is shown. Table III shows the values
of elements as 1—as ¢, €Xcept as o, and a; o—ag 2. The elements
a3 and as 4 in (5) are greater than those in (6), with a 5%
significance level. This means that just after body movement in
Non-REM1 and Non-REM2 sleep, there is a tendency to switch
to REM. The elements a; 5, a3», and ay o in (5) are greater
than those in (6), with a 5% significance level. This means that
just after body movement in REM sleep, there is a tendency to
switch to Non-REM1 or Non-REM2. Thus, (F3) “body move-
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Fig. 4. Shannon diagram of the matrix A. (a) Body movement occurs.
(b) No body movement occurs.

ment occurs just before and/or after REM” is shown. Table IV
shows the values of elements a; 2, a1 5, and a; . The elements
ai 2, ay,5,and ap ¢ in (5) are greater than those in (6), with a 5%
significance level. This means that when body movement oc-
curs in REM, Non-REM3, and Non-REM4 sleep, sleepers tend
to switch to AWAKE. Thus, (F4) “AWAKE frequently occurs
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TABLE I
BoDY MOVEMENT (F1)

Matrix element Transition matrix

Ay A,

a3, (REM—Non-REM1) 0.106 0.014
a; 5 (Non-REM3—NonREMI) 0.067 0.000
a3, (Non-REM4—Non-REM1) 0.066 0.000

TABLE II
BoDY MOVEMENT (F2)

Matrix element Transition matrix
Ay A,
ass (Non-REM3—Non-REM3) 0.732 0.879
as s (Non-REM4—Non-REM4) 0.615 0.855
TABLE III
BoDY MOVEMENT (F3)
Matrix element Transition matrix
Ay A,
a,; (Wake -=REM) 0.103 0.167
4,5 (Non-REM1—REM) 0.318 0.167
a,, (Non-R2—REM) 0.023 0.014
a,5 (Non-R3—REM) 0.000 0.000
a,, (Non-R4—REM) 0.011 0.000
a;, (REM —Wake) 0.034 0.014
a3, (REM—Non-REM1) 0.106 0.014
a,, (REM—Non-REM2) 0.131 0.106
as, (REM—Non-REM3) 0.000 0.000
as>» (REM—Non-REM4) 0.000 0.000
TABLE IV
BoDY MOVEMENT (F4)
Matrix element Transition matrix
Ah A/x
a,, (REM —Wake) 0.034 0.014
a;; (Non-REM1—Wake) 0.000 0.000
a;, (Non-REM2—Wake) 0.008 0.006
a; s (Non-REM3—Wake) 0.030 0.003
a6 (Non-REM4— Wake) 0.044 0.000

after body movement” is shown. Fig. 5 shows the transition of
sleep to a steady state from the Wake stage for the equation
when body movement occurs and no body movement occurs.
When body movement occurs, the most probable stage is Non-
REM?2 with a probability of 0.80 and the second most probable
stage is REM with a probability of 0.11, whereas when no body
movement occurs, the most probable stage is Non-REM2 with
a probability of 0.56, the second most probable is Non-REM3
with a probability of 0.25, the third most probable is Non-REM4
with a probability of 0.10, and the fourth is REM with a prob-
ability of 0.07. These tendencies show that the sleep transition
equation when no body movement occurs demonstrates deeper
sleep, whereas that when body movement occurs demonstrates
shallower sleep.

B. Decision of the Optimal Variances of the Noise

Here, we determine the values of €7, €3, €2, €7, €2 and €2 and
2,74, 73,77, 72, and 7¢ . Among the various values of £ = &3
and 77 — 72, we select those so that the coincidence rate of mea-

surements y(k) and the most probable state in & (k | k) estimated
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Fig. 5. Transition of sleep-stage probability.
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by the Kalman filter for the entire measurement time for the test
subjects in Group 1 is maximum, using the genetic algorithm.
Assuming 30 individuals that have £2 — £2 and 77 — 7¢ in each
generation, digenesis of 300 generations is continuous. Fig. 6
shows the highest and the average coincidence rates between
the measurements y(k) and the most probable state in &(k | k)
estimated by the Kalman filter.
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Fig. 7. Sleep stages judged by scorers.

In Fig. 6, increase in coincidence rate is saturated at around
100 generations. Among 300 generations, the genes of £ — &3
and 77 — 7 in the 276th generation have an average maximum
value of 56.3% and the highest coincidence rate is 62.7%. The
genes of £ — &2 and 77 — 7¢ of this generation are as follows:

& =214x1072 & =435x10"2 & =2.26x 102
€ =198x1072 &£ =12Tx107% ¢ =254x 102
7 =061x10" 7 =132x10" 7 =311x10"

7 =184x10" #=092x10" £ =112x10"

and we select the genes as the values of the variances.

C. Sleep-Stage Judgment by R—K Method

Fig. 7 shows the markers for which body movement occurred
and the sleep stages judged by Scorer 1, Scorer 2, and Scorer 3
for the third night’s data for a subject C.

The kappa statistics between Scorer 1 and Scorer 2 is 0.76,
that between Scorer 1 and Scorer 3 is 0.78, and that between
Scorer 2 and Scorer 3 is 0.81. These are high and the trend
characteristics are similar. However, Scorer 2 and Scorer 3 tend
to judge AWAKE more frequently than Scorer 1, and Scorer 2
frequently judged REM sleep. Thus, details of the judgments
are different.

Table V shows the kappa statistics between scorers for sleep
data in Groups 1 and 2. The mean of the kappa statistics between
Scorer 1 and Scorer 2 is 0.81, that between Scorer 1 and Scorer
3 is 0.87, and that between Scorer 2 and Scorer 3 is 0.81 for
Group 1, and 0.85, 0.89, and 0.81 for Group 2.

The statistics all exceed 0.74 and the reliability of judgment
is high.
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TABLE V
KAPPA STATISTICS EVALUATING RELIABILITY OF JUDGMENT
G Sub- Age Scorer 1 Scorer 1 Scorer 2
r ject Vs Vs Vs
o Scorer 2 Scorer 3 Scorer 3
u
p
Al 22 0.85 0.88 0.76
A2 22 0.78 0.86 0.81
G Bl 21 0.83 0.89 0.75
r B2 22 0.86 0.89 0.87
olc | = 031 092 079
p C2 23 0.85 0.89 0.76
! C3 23 0.76 0.78 0.81
Dl 22 0.81 0.86 0.82
D2 22 0.80 0.88 0.75
D4 23 0.81 0.84 0.78
El 18 0.86 0.81 0.82
F1 22 0.85 0.91 0.84
F2 23 0.74 0.85 0.82
H1 23 0.77 0.83 0.85
J1 25 0.81 0.88 0.85
Mean 223 0.81 0.87 0.81
S.D. 1.5 0.04 0.04 0.04
G D3 23 0.81 0.94 0.85
; E2 18 0.86 0.92 0.79
u Gl 23 0.79 0.81 0.79
p 11 22 0.88 0.90 0.79
2 12 25 0.90 0.90 0.81
Mean 222 0.85 0.89 0.81
S.D. 2.6 0.05 0.05 0.03

D. Estimation of Sleep-Stage-Appearance Probability

The sleep stages judged by the three scorers are employed as
the measurements y(k) of the Kalman filter given by (4) using
the optimal Kalman gain K(k). The estimate &(k | k) of the state
vector x(k) provides the probability of appearance of each sleep
stage for each discrete time. Fig. 8 shows the markers for which
body movement occurred and the output from the filter for the
third night’s data for the subject C. The probabilities are shown
by gray scale; the darker the lightness, the higher the probabil-
ity. When we compare (a), (b), and (c) in Fig. 8, the differences
in deterministic judgment in the confusing time intervals 20—
50, 70-80, 170-180, 220-250, 350-380, and 430-570 min in
Fig. 7 are statistically compensated. In a deterministic expres-
sion, these differ, but in a statistic expression, the probabilities
are shown.

IV. DISCUSSION

The results appear to show that the proposed algorithm is a
simple smoother or low-pass filter, but it is not. The Kalman filter
is a state estimator for an object whose dynamics are given by
an a priori mathematical model, and it is designed by using the
a priori information of the object as described in Section II-C.
Thus, state estimation by the Kalman filter is different from
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Fig. 8.  Sleep-stage-appearance probability and body movement.

simple smoothers and/or low-pass filters which do not use the a
priori information of the object.

Table VI compares the sleep stages by the three scorers for
the most probable stage; by the mean value of the kappa statis-
tic, that between Scorer 1 and Scorer 2 is 0.89, that between
Scorer 1 and Scorer 3 is 0.92, and that between Scorer 2
and Scorer 3 is 0.86 for Group 1 and 0.90, 0.93, and 0.84
for Group 2. These are all higher than their corresponding
mean values of 0.81, 0.87 and 0.81 for Group 1 and 0.85,
0.89 and 0.81 for Group 2 in Table V. The kappa statistics
for the Group 1 increased by 0.06 on average, and for the
Group 2 increased by 0.04 on average. Regarding Group 1,
we compared the kappa statistics in Table V with those of
the most probable stage in Table VI by Wilcoxon rank sum
test. As a result, all the kappa statistics between Scorer 1
and Scorer 2, Scorer 1 and Scorer 3, and Scorer 2 and Scorer 3
in Table VI are higher than the kappa statistics in Table V at a
significant level of 1%. Regarding Group 2, in the same manner,
all the kappa statistics between Scorer 1 and Scorer 2, Scorer 1
and Scorer 3, and Scorer 2 and Scorer 3 in Table VI are higher
than those in Table V at a significant level of 5%. As aforemen-
tioned, the kappa statistics for the Group 1 is increased by 0.06
on average and for the Group 2 is increased by 0.04 on average.
We compared the mean values of the kappa statistics between
Group 1 and Group 2 by Welch’s t-test. As the results, the mean
values for Group 1 is higher than those for the Group 2 at a
significant level of 5%. Therefore, this method is more effective
for Group 1 than for Group 2 since the state-transition matrix
was based on the data used for Group 1.

Furthermore, when we select the sleep stage from the most
probable and the second most probable, the kappa statistic be-
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TABLE VI
KAPPA STATISTICS OF EACH SLEEP-STAGE-APPEARANCE PROBABILITY
G| Sub- Scorer 1 Scorer 1 Scorer 2
r | ject Vs Vs \d
0 Scorer 2 Scorer 3 Scorer 3
u
p 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd
Al 089 | 091 | 093 | 088 | 093 [ 095 | 078 | 088 | 0.92
A2 088 | 093 | 094 | 091 | 095 [ 096 | 083 | 091 [ 093
Bl 090 | 093 | 095 | 094 | 096 | 098 | 089 | 091 | 0.92
Gl B2 089 | 092 | 094 | 092 | 095 [ 096 | 089 | 090 [ 0.93
(r) Cl 089 | 091 | 092 | 094 | 096 [ 097 | 090 | 091 | 0.94
u C2 088 | 092 [ 093 | 094 [ 096 | 098 [ 087 | 090 | 0.93
Fl) C3 083 | 091 [ 093 ] 080 | 092 | 095 [ 083 | 086 | 0.94
D1 087 [ 093 | 095 | 090 | 093 [ 097 | 083 | 091 | 092
D2 088 [ 091 | 092 | 095 | 096 | 097 | 086 | 089 [ 0.91
D4 | 086 | 091 | 094 | 093 | 095 | 096 | 083 | 091 | 0.95
El 094 [ 090 | 092 | 092 | 094 [ 096 | 086 | 088 | 0.92
F1 090 | 093 | 095 | 092 | 094 [ 096 | 086 | 091 [ 093
F2 091 | 092 | 094 | 094 | 095 | 097 | 088 | 091 | 093
H1 091 | 092 | 096 | 092 | 094 | 095 | 087 | 088 [ 0.91
J1 086 [ 091 | 093 | 093 | 096 | 097 | 087 | 090 | 0.92
Mean | 089 | 092 | 094 | 092 | 095 | 096 | 086 | 090 | 0.93
SD. | 003 | 001 | 0.01 | 0.04 | 001 | 001 | 003 | 002 | 0.01
G| D3 091 | 093 | 096 | 095 | 096 [ 097 | 091 | 093 | 0.96
(r) E2 088 | 092 | 095 | 094 | 095 | 096 | 080 | 085 | 0.88
u Gl 089 | 091 | 094 | 091 | 092 | 098 | 083 | 090 [ 0.91
g 11 090 | 093 | 094 | 091 | 094 [ 095 | 085 | 088 | 0.92
2 092 | 092 [ 095 | 092 | 094 | 097 | 082 | 091 | 092
Mean | 090 | 092 | 095 [ 093 | 094 | 097 | 084 | 089 | 0.92
SD. | 002 | 001 | 001 | 0.02 | 002 | 001 | 004 | 003 | 0.03

tween Scorer 1 and Scorer 2 is 0.92, that between Scorer 1 and
Scorer 3 is 0.95 and that between Scorer 2 and Scorer 3 is 0.90
for Group 1 and 0.92, 0.94, and 0.89 for Group 2. Similarly,
when we select the sleep stage from the most probable, the sec-
ond most probable, and third most probable, the kappa statistic
between Scorer 1 and Scorer 2 is 0.94, that between Scorer 1
and Scorer 3 is 0.96, and that between Scorer 2 and Scorer 3
is 0.93 for Group 1 and 0.95, 0.97, and 0.92 for Group 2. The
kappa statistics are increased.

For the judgment of the sleep stage for Group 2, which we
did not use for estimating the sleep-stage-transition matrix, the
reliability is improved.

As shown in Table VI, when we use the three most proba-
ble judgments, the average value of the kappa statistics among
the three scorers is over 0.92 and is highly reliable statistical
judgment. Furthermore, the confusing judgment by scorers as
shown in Fig. 7 can be shown statistically, which is a more accu-
rate description of the sleep stage. If the probability of the most
probable sleep stage is low, we can understand that the sleep is
hardly judged as one of the six categories.

V. CONCLUSION

This paper describes a novel sleep-stage-transition equation
in which the transition matrix is switched depending on whether
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or not body movement occurs during sleep. The transition matrix
is statistically determined by 15 nights’ sleep data on 10 normal
sleepers. Kalman filter was built to estimate the probability of
how surely the sleep belongs to the six different stages. Sleep
stages judged by three different scorers were compared using
kappa statistics.

If we select the sleep stage from the most probable three
judgments on the group of data by which the transition matrix
was estimated, the kappa statistic between Scorer 1 and Scorer 2
is 0.89, that between Scorer 1 and Scorer 3 is 0.92, and that
between Scorer 2 and Scorer 3 is 0.86. Furthermore, for sleep
not used to estimate the transition matrix, the kappa statistic
between Scorer 1 and Scorer 2 is 0.90, that between Scorer 1
and Scorer 3 is 0.93, and that between Scorer 2 and Scorer 3
is 0.84. The reliability of judgment is high and accurate in the
sense that the results are statistically described. This method
is effective although the only used stage is the most probable
one, which might provide sufficient information in some clinical
environments. In other clinical environments where more strict
analyses are required, however, the second and the third most
probable stages provide more detailed information.

In this paper, we built the sleep-transition equation, a sleep
mathematical model using the sleep data of young healthy sub-
jects. As for our future work, we are considering using more test
data to validate this method. The sleep modes change, as peo-
ple get older. For example, the occurrence rate of Non-REM4
sleep decreases almost linearly in proportion to age. Thus, sleep
transition might also change, as people get older. Therefore,
in order to apply the proposed algorithm, the sleep-transition
matrix must be defined and estimated for different generations.
Furthermore, the sleep stages vary much more for subjects with
sleep disorders, and so the sleep-transition matrix must be pre-
pared for each sleep disorder.
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